Homogenization of the Full Compressible Navier-Stokes-Fourier System in Randomly Perforated Domains

نویسندگان

چکیده

We consider the homogenization of compressible Navier-Stokes-Fourier equations in a randomly perforated domain $\mathbb{R}^3$. Assuming that particle size scales like $\varepsilon^\alpha$, where $\varepsilon>0$ is their mutual distance and $\alpha>3$, we show limit $\varepsilon\to 0$, velocity, density, temperature converge to solution same system. follow methods Lu Pokorn\'{y} [https://doi.org/10.1016/j.jde.2020.10.032], they considered full system periodically domains.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the steady compressible Navier–Stokes–Fourier system

We study the motion of the steady compressible heat conducting viscous fluid in a bounded three dimensional domain governed by the compressible Navier-StokesFourier system. Our main result is the existence of a weak solution to these equations for arbitrarily large data. A key element of the proof is a special approximation of the original system guaranteeing pointwise uniform boundedness of th...

متن کامل

Inviscid Incompressible Limits of the Full Navier–Stokes–Fourier System

We consider the full Navier-Stokes-Fourier system in the singular limit for the small Mach and large Reynolds and Péclet numbers, with ill prepared initial data on R 3. The Euler-Boussinesq approximation is identified as the limit system.

متن کامل

A Convergent Numerical Method for the Full Navier-Stokes-Fourier System in Smooth Physical Domains

We propose a mixed finite volume finite element numerical method for solving the full Navier-Stokes-Fourier system describing the motion of a compressible, viscous, and heat conducting fluid. The physical domain occupied by the fluid has smooth boundary and it is approximated by a family of polyhedral numerical domains. Convergence and stability of the numerical scheme is studied. The numerical...

متن کامل

Notes on Navier - Stokes - Fourier system

These Lecture Notes are devoted to some aspects of the theory of the Navier-Stokes-Fourier system. We shall discuss 1) existence of weak solutions, 2) existence of suitable weak solutions and relative entropies, 3) weak strong uniqueness property in the class of weak solutions. For physical reasons, we shall limit ourselves to the three dimensional physical space, and for the sake of simplicity...

متن کامل

Convergence of a numerical method for the compressible Navier-Stokes system on general domains

We propose a mixed numerical method for solving the compressible Navier-Stokes system and study its convergence and stability with respect to the physical domain. The numerical solutions are shown to converge, up to a subsequence, to a weak solution of the problem posed on the limit domain.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Fluid Mechanics

سال: 2022

ISSN: ['1422-6952', '1422-6928']

DOI: https://doi.org/10.1007/s00021-022-00679-2